The **theft** package for R

Trent Henderson | 16 July 2022

Today's talk

01 Software landscape

02 The theft package for R

03 Future directions

04 **Post-talk tutorial**

Software landscape

Numerous open-source packages for feature extraction exist...

...And they differ considerably...

Key takeaways

- Computation time varies over orders of magnitudes
- Within-set redundancy is high for tsfresh and TSFEL
- Correlations were identified between feature sets, with tsfresh being the most "unique"

Henderson, T., & Fulcher, B. D. (2021). **An Empirical Evaluation of Time-Series Feature Sets**. 2021 International Conference on Data Mining Workshops, 1032-1038

...And they differ considerably...

Henderson, T., & Fulcher, B. D. (2021). An Empirical Evaluation of Time-Series Feature Sets. 2021 International Conference on Data Mining Workshops, 1032-1038

...Which raises many questions

I have a large fMRI dataset, what feature set do I use?

Kats is a new feature set, how is it related to existing sets?

catch22 seems fast, does feasts add useful information on top of it?

I don't know what temporal dynamics best distinguish my classes, what feature set(s) should I use?

The theft package for R

theft

Tools for Handling Extraction of Features from Time series

The time series software package you never knew you needed

theft is a unified and extendable framework for computing features from six open-source sets from both R and Python.

It also includes a suite of functions for processing and interpreting the performance of extracted features, with extensive data-visualization templates, low-dimensional projections, and fitting and evaluation of feature-based classifiers.

theft extracts features from six libraries in one convenient package

And provides an extensive workflow for feature-based time-series analysis

1. Load in raw time-series dataset

В	id	time	value	group
	1	1	0.75	Control
	2	1	1.24	Control
	3	1	0.42	Treatment
	•	•	•	•
	•	•	•	•
	•	•	•	•

2. Extract features for each unique time series

Future directions

theft is flexible and extensible

Please feel free to contribute!

You can find the **theft** source code on GitHub: <u>https://github.com/hendersontrent/theft</u> A website with a rendered vignette of functionality is available: <u>https://hendersontrent.github.io/theft/</u>

See you later for the theft demo!

Resources for the demo:

https://github.com/hendersontre • nt/CNS-2022-theft

Feature 1

eature 2: /alue: 0.75

For single

901

Id you like to

accuracy?

Thanks for listening!

Feel free to get in touch:

<u>then6675@uni.sydney.edu.au</u> <u>https://github.com/hendersontrent</u> @trentlikesstats <u>https://www.linkedin.com/in/trent-henderson/</u>

Some of my software packages:

